Prediction of N loads to Delmarva Coastal Bays:

Discussion of a management-focused, user-friendly model

Joanna K. York
School of Marine Science and Policy
University of Delaware

September 18, 2015

Acknowledgements

- Delaware, Maryland and Virginia Sea Grant
- Mark Brush, VIMS
- Lora Harris, UMCES
- Students: Claudia Shuman, Dan Torre
- Ivan Valiela and colleagues

Project Objectives

- Constrain and modify a Nitrogen Loading Model (NLM) to predict total nitrogen (TN) loads to Delmarva coastal bays
- Link N loading model to:
 - Lagoon Ecosystem Model
 - Submerged Aquatic Vegetation Model
- Make models available for direct use by stakeholders

Nitrogen Loading Model (NLM)

- Developed for watersheds underlain by unconsolidated sandy sediments
- Appropriate where groundwater is dominant source of freshwater
- Rural to suburban land-uses
- Original model relied on exhaustive search of literature for many default values; current version has updated and added to these

Original Calibration

Model formats

Online

Excel spreadsheet

Delmarva NLM Inputs

Photos: ian.umces.edu, Chesapeake Bay Program Virginian-Pilot

Atmospheric deposition

Crop distributions (county-level ag stats)

(from aerial photos)

Residential development (septic tanks, lawns, impervious)

Land use distributions

Poultry operations (average practices)

NLM Schematic

Model Calibration

Model Results

Model Results

Total N load (kg N/year)

Rehoboth Bay: 110, 193
Indian River Bay: 279,453
Little Assawoman Bay: 42,605

Load to waterbody surface (kg N/ha/year)

Rehoboth Bay: 30 Indian River Bay: 70 Little Assawoman Bay: 52

Lagoon Ecosystem Model

SAV Model

Virtual Eelgrass Meadow (VEM)

+ Light & Temp

Courtesy Lora Harris

What is the major source of the N delivered to Rehoboth Bay?

What is the major source of the N delivered to Rehoboth Bay?

Atmospheric deposition to watershed. 12%

Atmospheric deposition to watershed	12/0
Turf fertilization	4%
Agriculture	
Barley	1%
Corn	
Soybeans	
Winter Wheat	2%
Excess poultry waste	0
Wastewater	8%
Point Sources	2%
Atmospheric deposition to bay	10%

What will happen as the watershed becomes more "suburbanized"?

What will happen as the watershed becomes more "suburbanized"? (halve area of corn/soybeans; population 7000-> 10,000)

Atmospheric deposition to watershed	12%	11%
Turf fertilization	4%	7%
Agriculture		
Barley	1%	1%
Corn	21%	7%
Soybeans	39%	14%
Winter Wheat	2%	2%
Excess poultry waste	0	0
Wastewater	8%	14%
Point Sources	2%	17%
Atmospheric deposition to bay	10%	29%

Model Utility

- Allows users to consider different scenarios impacting N loading
 - Where should N intensive land uses be located relative to the shoreline?
 - What happens if we make zoning decisions that change options for land use?
 - How much N load reduction bang would we get for the big bucks to hook up a neighborhood to a WWTP?

Now, your turn:

What do we really want to know about water quality?

 Does N loading drive poor water quality in these systems?

 Given the legacy of N loading— which is already en route to estuaries via groundwaterwhat can we do now?