Application of Biochar to Soils and Bioretention Media to Reduce Stormwater Volume and Nutrient Concentrations

Paul T. Imhoff¹

Joseph Brown¹, Wenling Tian¹, Chuck Hegberg² Sriya Panta¹, Seyyedaliakbar Nakhli¹, Pei Chiu¹, Jovita Saquing¹, Yudi Yan¹, and Larry Trout³

¹University of Delaware ²reGENESIS Consulting Services, LLC ³RK&K, Inc.

<u>Supporting Partners</u>: National Fish and Wildlife Foundation, Delaware Dept. of Transportation, Maryland Transportation Authority, City of Charlottesville, VA

Problem

 DE, DC, MD, NY, PA, VA, and WVA required to meet Chesapeake Bay water quality standards for nutrients and sediments

Dare to be first. NIVERSITY OF ELAWARE.

Current Solution

- Costly
 - > Stream restoration = \$73k per impervious acre treated
 - Tree plantings = \$100k
- Sometimes impractical
 - Usually requires purchase of private property or right of way
 - Land requirements kill some BMP projects

Proposed Solution #1: Roadway Soils

- How to reduce costs?
 - Use existing highway greenway usually not counted for treatment
 - Too compacted
 - Little infiltration
 - Steep slopes
 - Utilities
 - Modify
 - Increase infiltration
 - Increase water holding
 - Biological removal of pollutants

Hypotheses

- Enhance retention of N and water in the soil zone
- Increase rates of infiltration and chemical transformations

Field Test of Roadway Biochar Amendment

- Roadway biochar amendment
 - > Amend top 30 cm with 4% by mass wood-based biochar
 - Measure runoff volume and quality

Dare to be first.

Field Study – Roadway Soils

Field Test of Roadway Biochar Amendment

Control Strip - Tilled

4% Biochar Strip

Dare to be first.

Field Study – Roadway Soils

Dare to be first.

Field Study – Roadway Soils

Biochar amended soil attenuates peak flow ~ 77%

Field Study – Roadway Soils

Tillage attenuates runoff volume by ~ 20%

Biochar amendment attenuates runoff volume by ~ 53%

Field Studies – Roadway Soils

Storms in 2016

Tillage reduced peak runoff rate by ~ 51%

Biochar amendment reduced peak runoff rate by ~ 77%

Field Studies – Roadway Soils

Storms in 2016

Tillage reduced runoff volume by ~ 54%

Biochar amendment reduced runoff volume by ~ 83%

Why Reduction in Runoff?

Measurements of Hydraulic Conductivity with Disc Infiltrometer

biochar, tilled and undisturbed regions

Why Reduction in Runoff?

- Biochar increased geometric mean K_{sat} by ~ 50% over control (tilled)
- Consistent with 47% reduction in runoff peak flow rate over control (tilled)

Other Benefits – Decreased Compaction

Cone Stress, (kg/cm²)

Dry Bulk Density:

Undisturbed: 1.63 g/cm³

Control: 1.46 g/cm³

Biochar: 1.22 g/cm³

Analysis of Biochar Amendment

- For 1 year of testing, biochar reduces runoff volume 83%
- 0.12 acre biochar amendment "treated" 1-acre impervious, removing 83% of nutrients and sediments
- \$32k to treat 1-acre impervious
 - Cost similar to urban grass buffer \$27k per acre, but much less land:
 0.12 (biochar) versus 3.7 (urban grass buffer)
 - Much less than average \$144k per acre for Maryland SHA BMPs (recent estimate)

Proposed Solution #2: Bioretention

Biochar & ZVI-Amended Bioretention System

NO₃-N Removal – Example Field Test

NO₃-N Removal – All Field Tests

Key

B/Z-v – vadose zone of biochar cell B/Z-s – saturated zone of biochar cell Ctrl-v – vadose zone of control cell Ctrl-s – saturated zone of control cell

- Removal better in warm months
- Biochar/amended region outperforms standard mix
- System hydraulics important

Why Enhanced Denitrification?

Enhanced Denitrification

Electron storage capacity of biochar is bioavailable (up to 0.87 mmol e⁻/g) and supports nitrate reduction^[1]

[1] Saquing, et al., "Wood-Derived Black Carbon (Biochar) as a Microbial Electron Donor and Acceptor," *Environmental Science & Technology Letters*, 2016.

Conclusions

- Biochar amendment to roadway soil
 - Converts compacted soil into useful stormwater treatment BMP
 - Cost ~ 400% less than most BMPs implemented by MD SHA
 - Projected cost savings significant for large-scale implementation
- Biochar amendment to bioretention media
 - Consistently improved removal of nitrate
 - Improves hydraulics and redox conditions
 - > Removes organic nitrogen, nitrate, and ammonia