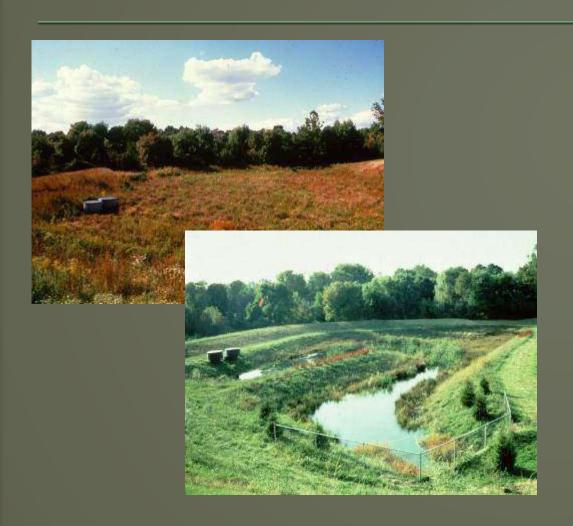


Chris Bason & Dr. Marianne Walch, *Delaware Center for the Inland Bays*

Presentation to CIB Board of Directors

December 15, 2017

Non-point Source Nitrogen Loads are the major nutrient source to the Bays.



The 2008 Inland Bays Pollution Control Strategy includes a Stormwater Retrofit Goal

Create stormwater management facilities for 4,500 acres of urban and residential lands developed pre-1990 Stormwater Law.

What Are Stormwater Retrofits?

Stormwater retrofits are stormwater management practices in locations where stormwater controls did not previously exist or were ineffective

Anchorage Canal is a part of the Town of South Bethany canal system on Little Assawoman Bay.

- Highly impervious drainage area (~50%), largest of all residential canals
- Receives runoff from storm drains under Rte. 1
- High pollutant loads
 - 592 lbs N/yr
 - 33 lbs P/yr
 - First flush Coliforms 90,000-800,000 units
- Highly eutrophic
- No MS4

Sediment Control Forebay

- Installed in 2004
- 16.5 yd³ of sediment enter annually
- Initially 28% efficient at sediment capture

Scarborough & Mensinger 2005 DNREC Coastal Programs Evaluation

Pollution Control Assessment and Retrofit Strategy Development

GOALS

- Reduce nutrient loads by 40% per TMDL
- CollaborativeDemonstration
- Multiple benefits
- Cost Effective
- Coastal Aesthetic
- Consider climate change

Stormwater retrofit assessment utilized CWP's Stormwater Retrofit Process

- Retrofit Scoping-Identify Objectives
- Desktop Analysis
- Retrofit Reconnaissance Investigation (RRI)
- Compile RetrofitInventory
- Evaluation and Ranking
- Final Design and Construction

Desktop Analysis

- Rapidly search for and identify potential retrofit sites across the subwatershed
- Save time in the field

Retrofit Reconnaissance Inventory

- Purpose
 - Verify feasibility of candidate retrofit sites
 - Collect information
- Key tasks
 - Evaluate potential retrofit sites, collect pertinent site information, and produce a basic concept design

sketch

Assessment prioritized 25 retrofits by cost effectiveness & feasibility

- 25 prioritized projects @30% design.
- Bioretention and infiltration focused.
- One keystone project.
- Dense development made finding space challenging.
- Maintenance schedule included.

FUNDING: USACE Planning Assistance to the States Grant matched by the Center, Town of South Bethany, an DelDOT = \$105,375 total.

Project 1: Wet Swale and Infiltration Pits

- Treated 30 40 ac. of high rise condo facility
- Installed 19 parking lot curb cuts and infiltration pits
- Converted existing ditch to planted wet swale with roadside filter strips

Project 1: Wet Swale with Check Dams

 Converted existing ~1 mi. long ditch to wet swale with check dams and planted.

 Regraded along PA Ave. shoulder to provide filter strip.

\$190,913 total cost (cash + in-kind services)

Wet Swale Performance

- Exemplary vegetation maintenance by Sea Colony Condo Assoc.
- High plant diversity and habitat value
 - Fish
 - Turtles
 - Herons
 - Muskrats
- No structural issues
- Natural appreciation and education values

Projects 2 & 3 Highway Bioretention Areas

- 33 highway bioretention areas treated ~20 ac. of highway and residential runoff.
- Utilized medians and ROWs.
- Conducted in two phases.

Right of Way Bioretention Areas

Six areas received bio-char amendment from 5 – 15%.

Highway Bioretention Performance

- Variable vegetation
 establishment and
 related sediment
 transport within areas
- Areas of bare, slightly eroding ground common
- Many established wetland conditions
- Typically drain within 48 hrs

Project Efficiency Examples

Wetswale & Pits

Median Bioretention

Source	Amount
DNREC Grant	\$95,866
CIB	\$31,235
Seacolony	\$21,000
TOTAL CASH	<u>\$148,101</u>
LEVERAGED IN-KIND	\$42,812
TOTAL	\$190,913
Lbs TP reduced	3.44
Lbs TN reduced	23.7
\$/lb/TP over 30 yrs.	\$1,850
\$/lb/TN over 30 yrs.	\$268

Source	Amount
DNREC Grant	\$44,297
CIB	\$21,000
South Bethany	\$18185
Middlesex Beach	\$700
DE Forest Service	\$30,000
TOTAL CASH	<u>\$84,182</u>
LEVERAGED IN-KIND	\$19,589
TOTAL	\$103,771
Lbs TP reduced	3.28
Lbs TN reduced	27.35
\$/lb/TP over 30 yrs.	\$1054
\$/lb/TN over 30 yrs.	\$126

Excludes maintenance costs \$/lb calculated separately for TP and TN.

Project 4: Sandpiper Pines Bioretention and Infiltration Areas

- Concept design for 12
 facilities around residential
 catch basins.
- Individual drainages mapped
- 6 in-situ bioretention
 /infiltration trenches and 2
 infiltration trenches
 selected for
 implementation
- 10 total acres treated
 - 15 lbs nitrogen removed
 - 2 lbs phosphorus removed
 - 452 lbs sediment removed

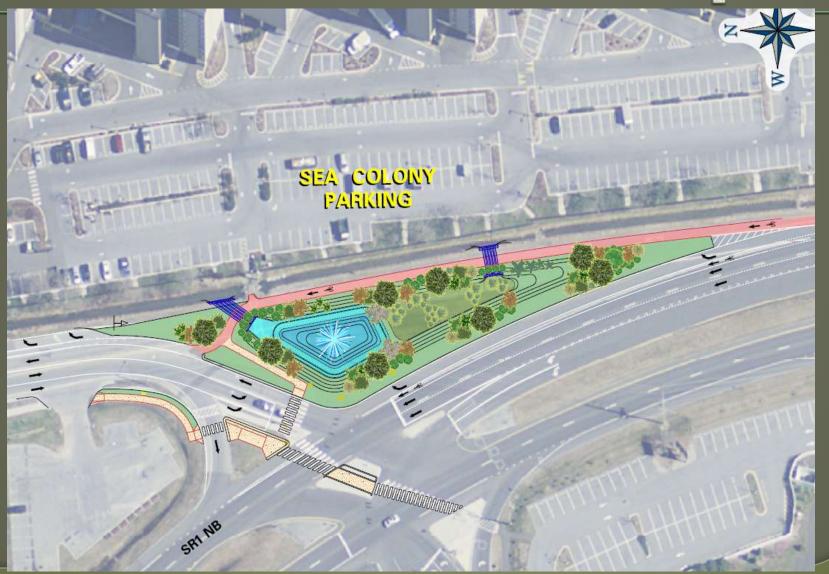
Sandpiper Pines Pre-existing Conditions

Project Funding & Efficiency

Sandpiper Pines

- Excludes maintenance
- Costs for nutrients calculated separately
- Extensive planning and design + low efficiency of practice infiltration = low cost effectiveness

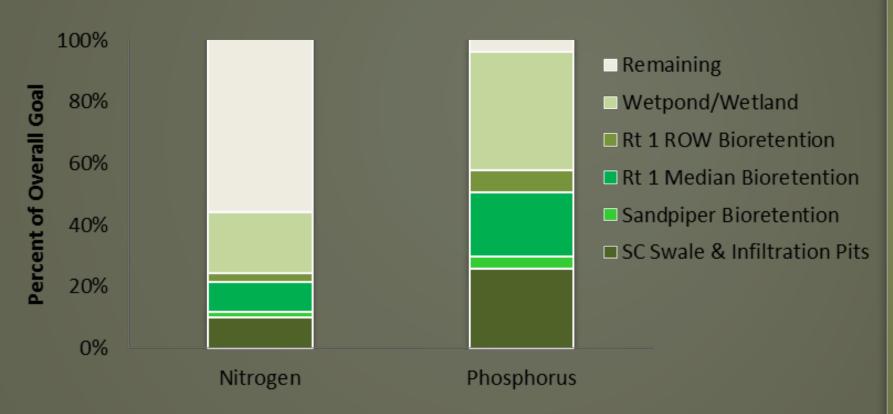
Source	Amount
EPA Planning	\$35,000
Assistance	
DNREC Implementation	\$136,900
Grant	
South Bethany Match	\$7,530
TOTAL CASH	\$179,430
LEVERAGED IN-KIND	\$10,441
TOTAL	\$189,871
Lbs TP reduced	2
Lbs TN reduced	15
\$/Ib/TP over 30 yrs.	\$3,165
\$/Ib/TN over 30 yrs.	\$421



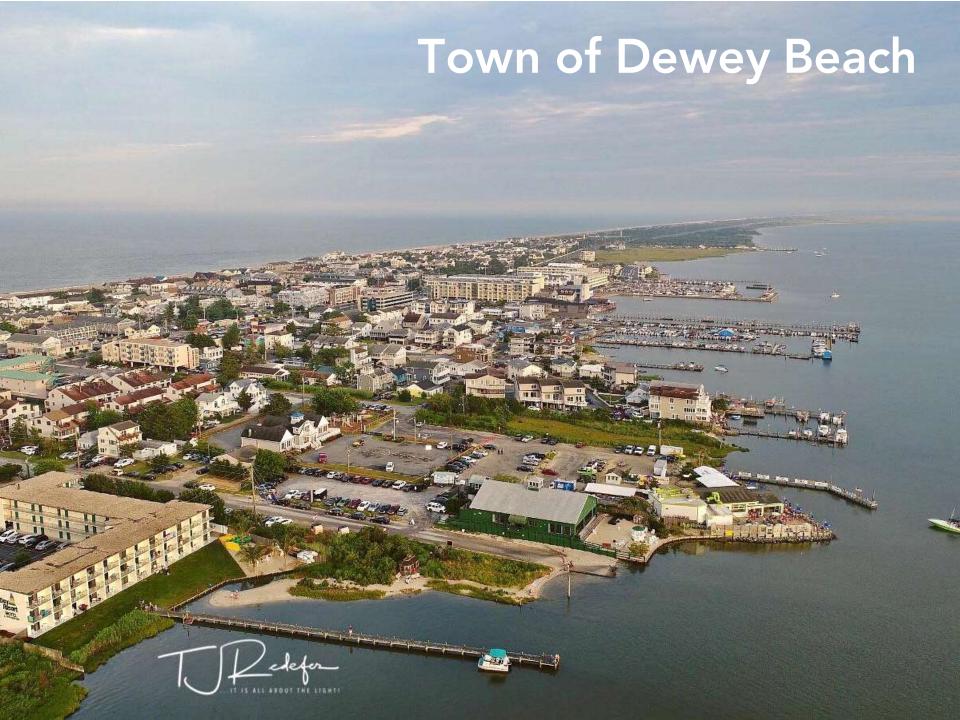
Wetland – Wetpond Demo Project *Location Aerial*

Continuing Projects: Highway Wetland/Wetpond

Highway Wetland Wetpond Concept


- Treat 6.4 acres of high rise complex runoff.
- Part of existing treatment train
- Estimated removal of 25.6 lbs. of nitrogen and 4.6 lbs. of phosphorus
- Estimated cost of \$500,000 funded 80% by DelDOT and 20% by SeaColony and CIB

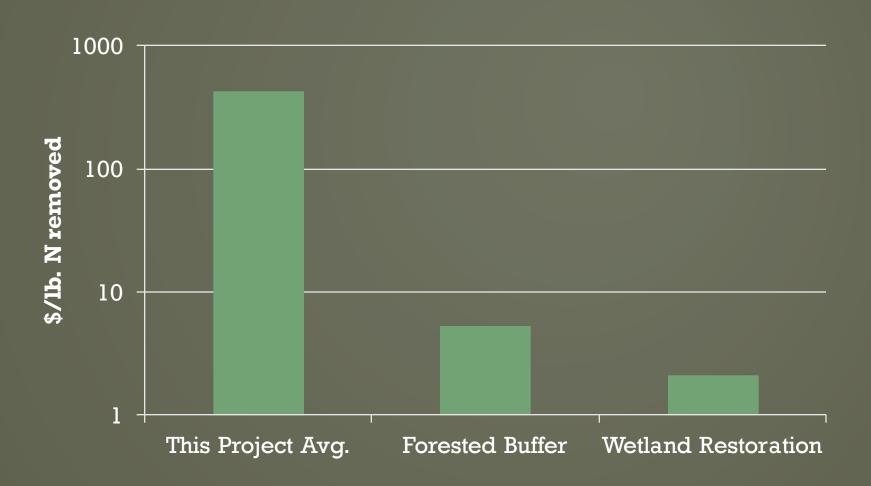
Additional Accomplishments


- Micro-rain gardens around additional highway ROW catch basins
- Town of South Bethany ordinances
 - · Ban on new outdoor showers draining to canals
 - Impervious surface ordinance
- Floating Filters Demonstration & Research Project in Canals
 - 100 floating cages with 2 bushels ea. of adult oysters
 - 10 floating treatment wetlands

Progress Towards Pollution Reduction Goals for the Anchorage Canal Drainage Area Stormwater Retrofit Demonstation Project

Project goal is a 40% reduction in Total Nitrogen and Total Phosphorus loads to the Canal and Bay

Read Ave. Living Shoreline Project


Retrofit Retrospectives – Part 1

- Multiple benefits hallmark of stormwater retrofits; non-water quality likely key.
- Like any mid-large scale effort, persistence and continuity of leadership pays off.
- Delaware's Clean Water Revolving Fund (SRF) has been an essential funder: <u>be</u> and advocate for clean water funding!

Retrofit Retrospectives – Part 2

- Plantings in coastal highway environments are expensive for install and maintenance, add little water quality benefit, and have mixed success for purpose.
- Expect nutrient reductions (and cost effectiveness) to decrease from concept to actual construction.

Cost Comparison for Urban versus Rural water quality restoration practices.

Weiland et al. 2009. Costs & Cost Efficiencies for some Nutrient Reduction Practices in MD.

