There's Wastewater in the Geology

Introduction to Current RIBS Research

CIB-STAC December 5, 2008

Scott Andres, Delaware Geological Survey

Hands-On Participants

- Delaware Geological Survey M. Turkmen*, E. Walther*, C. He, S. McCreary, H. Gittings, E. Wolff*, T. McKenna, J. Tomlinson*
- Dept. of Bioresources Engineering W. Ritter, A. Chirnside*, I. McCann, A. Kiliszek*
- Dept. of Geological Sciences A. Beers*, N. Maier*, J. Howard*, H. Michael
- Dept. of Civil and Environmental Engineering P. Imhoff, M. Akhavan*, M. Rivers*
- DNREC J. Barndt, P. Boettcher*, S. Strohmeier*, J. Kasper*, A. Siegel*, P. Cooper, L. McDaniel, R. Stevens, K. Glanden, H. Moore, J. Hayes, R. Graeber
- DPH Kevin Cottman
- Duffield Assoc. Inc J. Csoltka, S. Smailer, A. Klingbeil*, M. Neimeister*
- New Castle County Dept of Special Services

Acknowledgment\$

- DNREC USEPA
- UD Water Resources Center State Water Resources Research Institute
- DGS

OVERVIEW – Land Based WWD

Centralized Wastewater Treatment and Disposal – traditionally speaking...

- Public utility for the public good
- Provides ability to plan development
- More control over output of pollutants location, amount, and concentration
- Long term source of revenue for government
- Many complex interrelated issues

Privately Owned Wastewater Utilities – new wrinkles on an old issue

- Ability to sell treatment services as an privately controlled commodity
- Some infrastructure costs shift from public to private sector
- Can bypass government planning and control over infrastructure and build out
- Economies of scale and land use denser development with central treatment
- Zoning approval before environmental approval

How to avoid or manage risks?

- Public and environmental health
- Problem mitigation

- Development&Income
- Costs for wastewater treatment and disposal

Rapid Infiltration Basin Systems

- High hydraulic loading rates of treated sewage effluent into the ground
- Wastewater treatment plant
- Infiltration basins
- Vadose zone (natural) treatment
- Diffusion/dispersion of water and solutes in aquifers
- Many misconceptions, miscommunications

RIBlets

- Decades of operational history
- Most commonly used in developing arid areas, and locations that are fresh water "poor"
- Water reuse and recycling
- Hydraulic barriers against saltwater movement
- High loading > smaller land requirement
- Regulation and standards are a "?"

Tale of Scales

RIBS Research

- Phase I Treatment plant performance, site visits, comparison of state regulatory programs
- Phase II Field experiments infiltration beds, vadose and saturated zones, monitoring systems, site characterization methods
- Phase II Modeling experiments field site simulation, comparison of modeling approaches, GIS screening tools
- Phase III Reporting and wrap up
- Parallel SWRI project on vadose zone

Phase I Results

- Treatment plant performance shows mixed success – periodic plant "upsets", some "lemons", start up and capacity "gotcha's"
- Other states have adapted engineering, regulation, and policy to water and development needs and environmental/public health risks
- DE public and environmental health risks are significant and different from other states
- DE regulatory and administrative programs are not complete
- Initial recommendations for siting and buffer distances

Phase II Field Experiments

Infiltration beds

Small to large

Flooding in action

Infiltration issues and risks – Hydraulic Failure

- COMMON but AVOIDABLE
- Too slow and too fast problems caused by...
- Inadequate site characterization & facility design – reliance on MAGIC SAND
- Inappropriate infiltration bed maintenance
- Poor quality effluent
- Poor application practices

Phase II Field Experiments

Soil and Vadose Zone Treatment

- Backstop/supplement to treatment plant
- Effectiveness dependent on hydraulics rates, timing, subsurface materials
- N Mineralize, Nitrify, Denitrify...P Mineralize, Sorb...Pathogens, metals, organics, etc. predation, graze, sorbtion, mineralize, oxidation, precipitation.....

Infiltration issues and risks - geochemistry

- Little to no contaminant removal once past this zone and in an aquifer!
- Breakthrough of applied contaminants, mobilization of pre-existing contaminants
- Very complex system low risk design requires extensive work
- Problem diagnoses and fixes are costly
- Reliance on MAGIC SAND

Ground Water Benefits and Risks

- Recharge does occur
- Potential for re-use

- Contamination of key water resource
- Site specific flow details uncertain

Monitoring is key risk management tool

Risks - Regional transport of contaminants, contact with sensitive receptors Proper design and monitoring reduce risk

Flow Paths - Pre RIBS

Flow Paths – with RIBS

Testing Vertical Variations in Chemistry

Vertical variability

Nitrate – horizontal variability

SRP – horizontal variability

Flow Paths and Transport

No time to discuss details/ please stay tuned!

- Geology wrt GW quality, GW flow
- SEDIMENT CHEMISTRY As IN MARINE DEPOSITS WITH SULFIDES!
- INFILTRATION EXPERIMENTS
- FLOW AND TRANSPORT MODELING
- "EMERGING CONTAMINANTS"
- SITE SCREENING TOOLS

Questions

