Investigating Groundwater Discharge into Coastal Bays

Overview, Past Research, and Potential Applications in the Delaware Inland Bays

This talk...

 Overview of coastal groundwater dynamics

Brief look at work on Cape Cod

 Background on previous Indian River Bay work and ideas for future research in the Inland Bays

Coastal Groundwater:

Fresh Groundwater Flow to the Coast:

Fresh Groundwater Flow to the Coast:

Implications for ecosystems

Submarine Groundwater Discharge (SGD):

Steady Forcing

- 1 Freshwater discharge
- 2 Density-driven circulation

Steady Forcing

- 1 Freshwater discharge
- 2 Density-driven circulation

Transient Forcing

- 1 Nearshore: tides and waves
- 2 Offshore: waves and tides
- 3 Seasonal forcing

Sodium Bromide Tracer Test: Initial Salinity Profile

Elapsed Time 2:20

Elapsed Time 21:00

Elapsed Time 33:00

Elapsed Time 47:46

Elapsed Time 57:30

Elapsed Time 76:00

Elapsed Time 80:00

Transient Forcing

- 1 Nearshore: tides and waves
- 2 Offshore: waves and tides
- 3 Seasonal forcing

Offshore: tides

Offshore: tides, waves

Transient Forcing

- 1 Nearshore: tides and waves
- 2 Offshore: waves and tides
- 3 Seasonal forcing

Tools for Measuring/Estimating SGD

In the field:

- Seepage Meters (direct)
- Hydraulic Gradients (indirect)
- Tracers (very indirect)

Modeling:

- 2D, 3D numerical models
- Variable-density

Seepage Meters

Seepage Meters

(Piezometers)

Tools for Measuring/Estimating SGD

In the field:

- Seepage Meters (direct)
- Hydraulic Gradients (indirect)
- Tracers (very indirect)

Modeling:

- 2D, 3D numerical models
- Variable-density

Modeling

- Simulate groundwater flow and solute transport
 - Based on governing equations (physics)

A TOOL for understanding systems

- Different features/conceptual models → controls (what determines groundwater discharge rates?)
- Simulation → answers to questions
 (what are estimated groundwater discharge rates?)
- Variation of parameters → sensitivity (how sure are we of the estimates?)

This talk...

Overview of coastal groundwater dynamics

Brief look at work on Cape Cod

 Background on previous Indian River Bay work and ideas for future research in the Inland Bays

Seepage Meter Transect Results:

Numerical Model

- 2D
- Simulates groundwater flow and salt transport

Seafloor Groundwater Discharge (Modeled)

From Waquoit Bay...

- Different forcing mechanisms move water of different origins (terrestrial, marine) and at different flow rates
- We are able to quantify flow rates and zones using field measurements and modeling

We also Know...

• Different types of discharging water may have different levels and types of dissolved nutrients (high vs. low, bioavailable vs. non-bioavailable)

Potential application to Inland Bays

This talk...

Overview of coastal groundwater dynamics

Brief look at work on Cape Cod

 Background on previous Indian River Bay work and ideas for future research in the Inland Bays

Prior Related Work in Indian River Bay: (DGS, DNREC, USGS, UD, etc...)

Onshore and Offshore...

Geology

- Characterization of Columbia Aquifer
- Identification of paleovalleys

Hydrogeology

- Characterization of hydraulic properties
- Estimation of fresh groundwater flow

Geochemistry

- Salinity distribution
- Nutrients
- Ages

Prior Related Work in Indian River Bay: (DGS, DNREC, USGS, UD, etc...)

Onshore and Offshore...

- Valuable basis for understanding the system
- Reveals complexities previously not understood
- Essential framework for future research on hydrogeology and nutrient loading to the bays

Mckenna, Andres, and Lepp, 2007

Krantz et al., 2004

Classical Conceptualization:

Indian River Bay Conceptualization:

Discharge Modes:

Böhlke and Krantz, 2003

Indian River Bay Conceptualization:

Indian River Bay Conceptualization:

To Investigate these Ideas:

Field Work:

- Further hydrogeologic investigation
- SGD measurements on the bayfloor
- Geochemical sampling and analyses

Modeling:

- Large 3D model of watershed and bays
- Smaller models of individual mechanisms
- Estimate fluxes of fresh and saline groundwater, and associated nutrient species

Results May:

- ◆ Aid in development of more effective management schemes
- ♦ Help to identify practices that may exacerbate nutrient loading
- ♦ Improve the health of bay ecosystems!

