Automated Analysis of Nutrients and Related Water Quality Parameters at Millsboro Pond.

William Ullman¹, Scott Andres², Karen Savidge¹, Hassan Mirsajadi³, Jennifer Volk³, and Gerald Mood³

¹College of Marine Studies, ²Delaware Geological Survey, ³Delaware Department of Natural Resources and Environmental Control

Objectives

- Frequent and rapid sampling of baseand storm-flow to more accurately estimate nutrient loads to Indian River from Millsboro Pond
- Track progress towards meeting Total Maximum Daily Load (TMDL) goals
- Develop models for estimating historical and potential future nutrient loads

Why Millsboro Pond?

 Accessible location on Route 24

- The largest subwatershed and nonpoint source contributor
- Within the TMDL High Reduction Area making it a desirable area to track load reductions
- Land use is mixed and characteristic of the entire Inland Bays Watershed

2002 Land Use

Greenspan Aqualab®

- Self-contained automated water quality analyzer
- Dissolved oxygen, pH, conductivity, temperature, turbidity, nitrate, ammonium, phosphate
- Remote control
- Interface with ISCO water sampler

- Phase 1: (Completed)
 - Laboratory analytical experiments
- Phase 2:
 - Installation at Millsboro Pond
- Phase 3:
 - Calibration to grab samples, ISCO samples, and datasonde data
- Phase 4:
 - Determination of event, monthly, seasonal, and annual nutrient loads
- Phase 5:
 - Develop models for estimating historical and potential future nutrient loads

Analytical Methods

- Ion Specific Electrodes (nitrate, ammonium)
- Spectrophotometry (phophate)
- Nephelometry (turbidity)
- Electrical sensors (dissolved oxygen, pH, conductivity, temperature)
- Internal standardization (by event or daily)

Analytical Module

Reagent and Waste Storage

8

Aqualab[®]

Analytical Limitations

- Not all nitrogen species are measured by Aqualab[®]
 - Not measured = PON, DON, NO_2 -
 - Usually minor at Millsboro Pond
- Not all phosphorus species are measured by Aqualab[®]
 - Not measured = DOP, all PP
- Traditional sampling is being used to estimate total loads from measured Aqualab[®] parameters

- Phase 1:
 - Laboratory analytical experiments
- Phase 2: (Completed)
 - Installation at Millsboro Pond
- Phase 3:
 - Calibration to grab samples, ISCO samples, and datasonde data
- Phase 4:
 - Determination of event, monthly, seasonal, and annual nutrient loads
- Phase 5:
 - Develop models for estimating historical and potential future nutrient loads

Installation

- Phase 1:
 - Laboratory analytical experiments
- Phase 2:
 - Installation at Millsboro Pond
- Phase 3: (Ongoing)
 - Calibration to grab samples, ISCO samples, and datasonde data
- Phase 4: (Ongoing)
 - Determination of event, monthly, seasonal, and annual nutrient loads
- Phase 5:
 - Develop models for estimating historical and potential future nutrient loads

Example Aqualab® Data

- Storm Data from 5 14 October 2005
- Discharge from USGS gauging station at Millsboro Pond
- Rainfall from UofD Research and Education Center (Georgetown and Harbeson)

October 2005	6	7	8	9	10	11	12	13	14
Georgetown	0	0.54	3.68	0.03	0.54	0.18	0.02	0.29	0.03
Harbeson	0	0.16	3.00	0.01	0.01	0.07	0.22	0.61	0.08

15

Ongoing Tasks

- Calibrate Aqualab[®] Nitrate, Ammonium, and Turbidity to Total Dissolved N (TDN) and/or Total N (TN)
- Calibrate Aqualab[®] Phosphate (unfiltered) and Turbidity to Total Dissolved Phosphorus (TDP) and Total Phosphorus (TP)
- Quality Control and Quality Assurance.
- Load Determinations (Present, Past, and Future)

- Phase 1:
 - Laboratory analytical experiments
- Phase 2:
 - Installation at Millsboro Pond
- Phase 3:
 - Calibration to grab samples, ISCO samples, and datasonde data
- Phase 4:
 - Determination of event, monthly, seasonal, and annual nutrient loads
- Phase 5: (Future)
 - Develop models for estimating historical and potential future nutrient loads

Funding and Other Support

