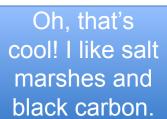
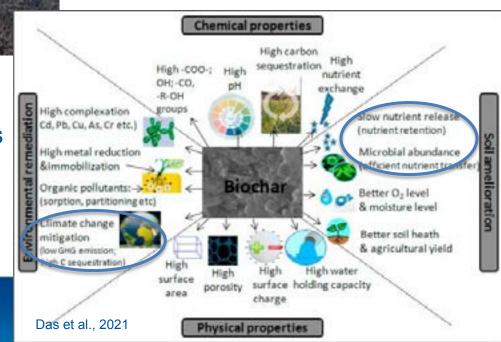
The Effects of Prescribed Burns of *Phragmites australis* on Salt Marsh Ecosystem Services

Andrew Wozniak, Mollie Yacano

Image: Wayne Lehman



Me too. Let's write a proposal!


Do prescribed burns of Phragmites for tidal marsh restoration bring C, N, and P biogeochemical ecosystem services?

- Biomass fires make biochar.
- Biochar has physicochemical properties that offer biogeochemical ecosystem services.
 - e.g., C, N, P, pollutant immobilization

Black Carbon/Biochar

"Collaborative" Research Question:

Where do prescribed burns and biochar fit within a climate adaptive restoration framework for Delaware (and beyond)?

<Subject of this talk>

Study Goals

- Summarize the state of the science on prescribed burns in salt marshes
- Assess the impacts of *Phragmites* removal via herbicide-burn treatments on marsh ecosystem services
- Help managers decide if this treatment aligns with their priorities

Impacts of Prescribed Burns on Tidal Marsh Ecosystem Services

1"Andrew S. Wozniak, "Mollie R. Yacano, "Pamela C. Edris, "Christopher L. Kelly, "Emma E. Leaseburg

Prescribed Burns – Why?, How?, Challenges

Why? How?

- Historically marsh access for resources
- Now remove potential wildfire fuel,"rejuvenate" the marsh by removing wrack, restore native vegetation
- Pair with herbicide applications
- Repeat as needed
- Burn windows are short (< 40 days between October to April)
 - Air Quality concerns in summer, Hunting/trapping seasons
- Personnel requires 10-14 trained staff
- Weather conditions (winds, drought), Tides
- Funding is low and often unpredictable

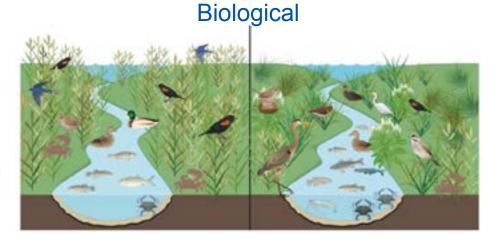
Tidal Marsh Ecosystem Services

Biogeochemical

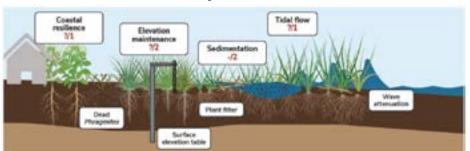
Admissioner:

C remineration

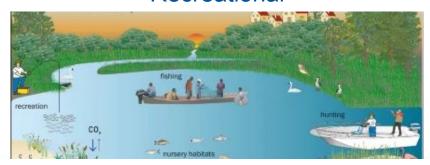
Line 1 to the strong print


Line 1 to the strong print

Line 2 to the strong print


Line 3 to the strong print

Line 4 to the strong print


Line 5 to th

Physical

Recreational

*Economic, cultural and other services are acknowledged but not assessed here.

Ecosystem Service Rating Scheme

Assessment of Impact on an Ecosystem Service

Table 1. Ecosystem Service Assessment Impact Scores

Score	Description	Reasoning
	Negative Impact	Available data demonstrate net negative impacts on the service of interest.
+	Positive Impact	Available data demonstrate net positive impacts on the service of interest.
0	No Impact	Available data demonstrate no net impacts on the service of interest.
7	Unknown Impact	There are no data currently available that suf- ficiently assess burning impact on the service of interest OR available data demonstrate both positive and negative impacts.

Table 2. Ecosystem Service Assessment Confidence Levels

Confidence in that	
Assessment	

Score	Description	Reasoning
1	Low Confidence	Little to no data is available on the service of interest. Little to no regional or prescribed burn-specific data available.
2	Moderate Confidence	Sufficient data is available on the service of interest. Regional and prescribed burn specific data on the service of interest may be available as well
3	High Confidence	Sufficient data are available. Regional and pre- scribed burn related data on the service of interest are available as well.

Challenges

- Very few studies directly assess how burn restorations impact the full suite of ecosystem services
- Assessments of burn restoration success are also scant.
 - Success defined as P. australis replaced by native over long timescale

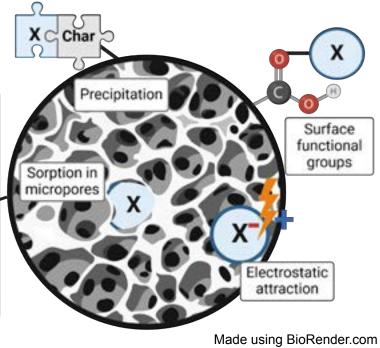
Assumptions

- Burn to native restorations are 100% successful
- Where data are missing, impacts on ecosystem service assessed as replacing *Phragmites* with native *Spartina*
- All burns assumed to be paired with herbicide application

Biogeochemical Services

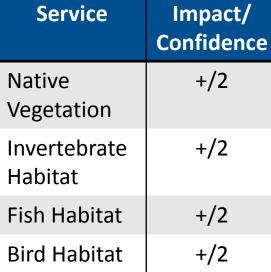
Service	Impact/ Confidence
Carbon Storage	+/3
Nitrogen Removal	-/2
Phosphorus Storage	0/2
Pollutant Removal	+/1
Greenhouse Gas Reduction	-/1

- Burns increase biomass production and carbon storage
- No strong evidence for other positive biogeochemical impact from herbicide-burn restorations

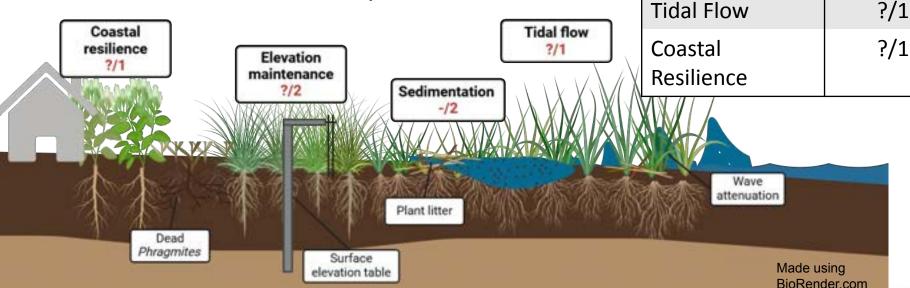


Biogeochemical Services

Service	Impact/ Confidence
Carbon Storage	+/3
Nitrogen Removal	-/2
Phosphorus Storage	0/2
Pollutant Removal	+/1
Greenhouse Gas Reduction	-/1



BioRender.com


- While data are scarce, there is evidence burn restorations can remove *Phragmites*
- Effects on animals can be species specific; generalists do well with *Phragmites*, specialists do better with *Spartina*

Physical Services

- Little to no burn-specific studies
- Literature reports are variable
- Phragmites improves sedimentation
- Assessments of herbicide impacts are needed

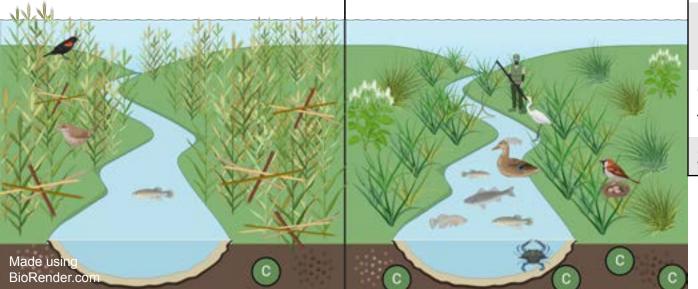
Impact/

Confidence

-/2

?/2

Service


Sedimentation

Maintenance

Elevation

Recreational & Cultural Services

- No burn-specific studies
- Impacts are largely tied to biological and physical services

Service	Impact/ Confidence
Ecotourism	+/1
Outreach & Education	?/1
Hunting & Fishing	+/1
Connection to Land	?/1
Spiritual	?/1

Recommendations

- Managers are urged to use our review/assessments in the context of their own management goals and ecosystem service priorities
- Long-term monitoring efforts (5-10 years) are needed
- Herbicide-burn specific studies are needed; assessment of herbicide effects and effectiveness would add confidence to assessments
- Large-scale effort to assemble and critically evaluate existing monitoring data would be valuable for informing success/failure of restoration goals
- Studies of public, stakeholders' perceptions of marsh ecosystem goals and willingness to pay for restoration interventions

Conclusions

- Existing literature reports assessing prescribed burn restoration impacts on ecosystem services are few
- Ecosystem service impacts are variable within and among ecosystem service categories
- Prescribed burns continue to be conducted though they are logistically difficult
- An end of project Workshop in September 2024 identified several barriers, solutions, and opportunities to improve *Phragmites* management
- See next week's NSC Webinar, 10/30 @ 3PM for more.

3:00 - 4:00 pm ET, Thursday, October 30, 2025

Register via Zoom

<u>Biochar in Marsh Restoration</u> <u>Advisory Committee</u>

Alison Rogerson Anthony Gonzon

Hannah Small Bart Wilson

Taylor Beck Jamie Joachimowski

Christina Whiteman Craig Rhoades

Kaity Ripple Josh Moody

Kyle Hoyd Erin Wilson

Marianne Walch Sam Topper

Acknowledgments

Dr. Kari St. Laurent

U. Delaware

Kyle Krezdorn

Jacob Ukropec

Dr. Alina Ebling

Jackalyn Wyrobek

Tia Ouyang

Felix Agblemanyo

DNREC/DNERR

Lynne Pusey

Jenn Holmes

Impacts of Prescribed Burns on Tidal Marsh Ecosystem Services

Authors

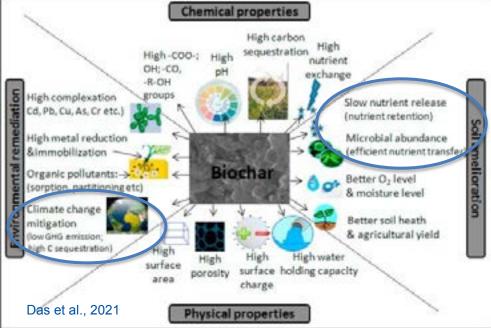
^{1,*}Andrew S. Wozniak, ²Mollie R. Yacano, ²Pamela C. Edris, ³Christopher L. Kelly, ²Emma E. Leaseburg

Project webpage at NERRS

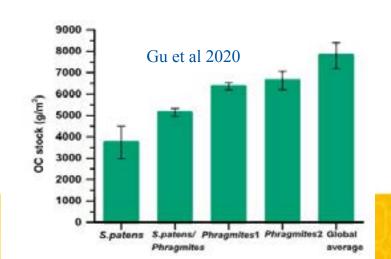
Funding: NOAA NERRS Science Collaborative (#NA19NOS4190058)

Proposal: Kari St. Laurent

Field & lab assistance: A. Ebling, K. Krezdorn, J. Ukropec, T. Beck



CARIBBEAN



Technical Research Question:

Do prescribed burns of Phragmites for tidal marsh restoration bring C, N, and P biogeochemical ecosystem services?

Prescribed Burns – Challenges/Considerations

- Burn windows are short (< 40 days between October to April)
 - Air Quality concerns in summer
 - Hunting/trapping seasons
- Personnel requires 10-14 trained staff
- Weather conditions (winds, drought)
- Tides
- Funding is low and often unpredictable

